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Abstract
In this work we plot loop configurations that minimize energy functionals
depending on geometrical invariants of the loop itself. In particular, we consider
a family of functionals including curvature and torsion terms, both linear and
quadratic, such that their combinations produce geometrical invariants. In
[1], Noether’s theorem was advantageously used to identify the constants
of integration of the Euler–Lagrange equations describing the equilibrium
of loops for this family of energy functionals. Those authors demonstrated
the integrability of these functionals by means of quadratures. In this work
we follow that approach to realize numeric calculations and to show plots
of numerical solutions of the relevant equations for equilibrium of loops, as
these were presented but not studied in [1]. We then show as the main result
of this work a representative catalogue of such solutions in Euclidean three-
dimensional space.

PACS numbers: 02.30.Xx, 11.10.Ef, 61.41.+e

1. Introduction

Let us consider a curve X(s) embedded in an Euclidean three-dimensional space, such that s
is an arbitrary parameter and l is the arc length:

l(s) =
∫ s

0
ds ′

√
dX
ds ′

dX
ds ′ . (1.1)

The unit tangent vector is defined as1 t = dX
dl

. If the curve is smooth enough everywhere, it
will always be possible to define a Frenet–Serret vector basis at each point (t, n1, n2), where

1 In what follows, a prime will denote derivative with respect to l, so that t ≡ X′.
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n1 and n2 are the normal and binormal vectors, respectively. The evolution of these vectors
along the curve will be described by the classical Frenet–Serret equations

t′ = κn1

n′
1 = −κt + τn2 (1.2)

n′
2 = −τn1.

where κ(l) and τ(l) are the curvature and torsion of the curve, respectively; additionally, an
orientation n2 = t × n1 is chosen, see [2].

Let us associate with the curve an energy that depends on its configuration through its
curvature and torsion. The most general energy functional one can write has the form:

H [X] =
∫

dl f (κ, τ ), (1.3)

where f (κ, τ ) must be invariant under coordinate changes of the background space and under
transformations of the generating parameter l. Some examples of functionals satisfying these
requirements are: (i)f = t′ · t′ = κ2, (ii)f = n′

1 · n′
1 = κ2 + τ 2 and (iii)f = n′

2 · n′
2 = τ 2.

When f depends quadratically on κ or τ only, for instance f (κ) = κ2 or f (τ) = τ 2, some
curves that minimize H are known for a long time to be helices (for a pedagogical review, see
[3] and references therein). This fact motivated some authors to look for a physical application
of these kind of theories as they considered this helix to be the ground-state conformation
of a chiral polymer [4]. For instance, let us mention the mechanical elastic model for the
double chain of DNA molecule which was proposed in the eighties, see [5] and references
therein. This model is based on the hypothesis that for large length scales compared to the
range of the molecular interaction between the chain and its environment, the duplex DNA has
the mechanical properties of a symmetric, linearly elastic rod and therefore it responds to the
environment in the same way that a stiff rod does under loads in material science, see [6]. This
mechanical picture is known to be useful for representing DNA equilibrium states, as well as
the occurrence of supercoiling [7]. Then the primary assumption of this elastic model would
be that the loop (rod) has an elastic energy H composed of two parts: the bending energy Hb

and the torsional energy Ht

H [X] = Hb + Ht ≡
∫

dl
A

2
(κ − κ0)

2 +
∫

dl
C

2
(τ − τ0)

2, (1.4)

where A and C are the bending and torsional stiffness coefficients, respectively, see [8].
Even for simpler forms of f than that proposed in equation (1.4), the resulting field

theory is quite involved due to the complex dependency of κ and τ on X so that a qualitative
understanding of the solutions is hard to achieve. In spite of the physical motivation, as far
as we know, not much work has been devoted to finding equilibrium configurations of curves
for functionals like that of equation (1.4) in the most general case—even though there is in
fact already a tradition of using an Euler-angles approach to find exact solutions in terms of
elliptic integrals. See for instance, the work of Wadati [8]. Wadati shows the equilibrium
configurations associated with a purely quadratic functional like that given in equation (1.4),
obtained by considering elliptic integrals, but since such integrals can be solved analytically
just for the simplest cases, these curves were limited to a plane. Therefore, it is our opinion
that a global picture of all the possible geometric equilibrium shapes of curves still remains
to be achieved, above all for energy functionals involving torsion, where little appears to be
known.

On the other hand, models depending only on the curvature, f = f (κ), have been known
to be integrated by quadratures for some time (see [10]). In fact, and from a purely algebraic
point of view, the resulting quadratures are analogous to those arising in the problem of a
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particle moving in a central potential, with the roles of time and spatial coordinates replaced
by the arc length and curvature, respectively.

Recently, taking advantage of this approach of integration by quadratures, Arreaga,
Capovilla, Chyssomalakos and Guven considered, in [11], the case of a functional that
depends quadratically on the curvature, for a closed loop on the plane such that its equilibrium
configurations have two constraints, one on its total length, the other on the total area enclosed
by the loop. The energy functional they considered was:

H = α

∫
dl κ2 − µ

(∫
dl − L

)
+ σ

(∫
d2x − A

)
. (1.5)

They showed that a complete analysis of such a model with three parameters, (α, µ, σ ), is
far from trivial. The analysis of the function corresponding to the effective potential in this
case was complicated, and it was then necessary to resort to numerical techniques in order
to integrate the field equations. However, the richness of the types of solutions was clear:
some curves were found to be self-intersecting, others were not, but in either case, they had
a high degree of symmetry and geometric appeal (see for instance figures 8 and 9 in [11]
and chapter 4 of [12] as well). Additionally, if one inspects the wide range of solutions
obtained, it can be noted that some of them resemble the configurations observed among
amphiphillic membranes. We recall that there is solid evidence that a curvature-depending
functional, that proposed by Helfrich, captures the most relevant aspects of amphiphilic
membrane configurations in thermal equilibrium for two-dimensional surfaces embedded in
an Euclidean space, see [15].

In this paper we carry out a simple and straightforward extension of the work presented
in [11], as we consider models with terms quadratic and linear on both the curvature and the
torsion, so that families with several free parameters can be studied. We show a wide number
of curves that are representative solutions to different energy functionals, including loops both
on the plane and in an Euclidean three-dimensional space.

The integrability by quadratures of the models we have considered in this paper was
already established by Capovilla, Chryssomalakos and Guven in [1]. They employed a general
formalism based on exploiting Noether’s theorem to identify the constant of integration of the
Euler–Lagrange equations as the Casimirs of the Euclidean group in three dimensions. The
integral associated with rotational invariance permits them to obtain a formula relating
the torsion and the curvature in such a way that one of them can be expressed in terms of the
other. The integral associated with translational invariance can then be cast as a quadrature
for κ or for τ .

The integration by quadratures of functionals depending quadratically on the curvature
was shown to be possible, as was previously known. Nevertheless, Capovilla, Chryssomalakos
and Guven have also shown that the same approach holds true for functionals quadratic on the
torsion, which is rather surprising given the nature of the field equations.

The formalism will not be reproduced here, rather, we shall focus our attention on the
numerical solutions to be obtained, and the field equations will be shown only as needed. For
further details the reader is directed to [1].

In this approach, the space curve configurations become as we sweep out the levels of the
well of the effective potential starting from its minimum value. In this point, this approach
offers differences with respect to the work about elastic filaments done by Nizette and Goriely
in [16]. Indeed, taking advantage of the connection between the equations describing the
statics equilibrium of rods and the dynamics of spinning tops, these authors have made a
very interesting and complete classification of the 3D solution curves for the Euler–Kirchhoff
elasticity model.
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In spite of the interest of these kind of energy functionals as, among other things,
mechanical models for polymer chains and for modelling the DNA supercoiled configurations
(see [20–23]), we are not aware of any systematic study of the solutions or their properties
other than the simplest configurations for the quadratic model in the curvature, as was shown
in [5]. We insist that it remains to be seen what other types of solutions can be admitted by
different models.

In this paper, we will plot solution curves for more functionals other than the pure curvature
model, however, we postpone for a second part of this work, the problem to undertake an
exhaustive classification of the solution curves from a geometrical point of view (see for
instance [18] for the elastic rods). Rather, we will study the effective potential in order to
obtain the solution curves. In the case of pure torsion models, as far as we know, this analysis
is presented here for the first time. Then we will show a small number of curves in order to
illustrate the geometrical nature of the solution family.

We will complete this project in a subsequent publication, where we will consider the
response of these loops to shear flow. Then, in view of this new and more complete showcase
of solutions curves, we will be in a position to consider the applicability of these energy models
as mechanical toy models for representing some DNA physics.

This section has introduced some basic geometrical notions which allows us to properly
state the geometric basis of these models. The rest of the paper is divided as follows: in
section 2 we present solutions to the quadratic-curvature model, while section 3 deals with
a simple extension that includes a linear term on the torsion; section 4 presents solutions for
a purely quadratic model on the torsion and section 5 treats the corresponding extension to
include a term linear on the curvature. Finally, section 6 presents some general comments on
our results. Details of the numerical implementation can be found in the appendix.

2. Model I: f (κ) = (κ − κ0)2 + µ

The purely quadratic-curvature model has been studied by mathematicians (see for instance
[10, 13] and especially the work of Langer and Singer [14] who have obtained analytically
the solution for this model in terms of elliptic integrals and have parametrized the space of
solution of elastic curves by a triangular region of the parameter plane: they found that the
solution curves are either closed curves or wind densely around a torus of revolution; they
also found that closed curves form a countable set of points lying on a single curve within a
triangle); by physicists in different contexts, among them, in special relativity (see [19] and
references therein); in soft materials; and in polymer science (see [3]).

In [11] it was shown that plane curve solutions to the purely quadratic theory are much
more interesting when one considers constraints both on the area and on the form of the
curve on the energy functional simultaneously, see equation (1.5). In this way, the free
parameters (µ, σ ), together with the integration constant E resulting from the quadrature, give
a three-parameter solution space, which complicates the analysis of the effective potential
associated with the quadrature. The problem of the elastica in the plane was also considered
independently by Yang-Chan and Xing in [12].

This section considers the 3D generalization of the loops studied in [11] with an additional
constant κ0, which is introduced as a one-dimensional analogy to the spontaneous curvature
of amphiphillic membranes (see [15]). However, here we do not enforce a constraint on the
area enclosed by the curve, nor ask for the curve to be closed, since in general, the solutions
for this model are open curves.

We mention that Nizette and Goriely have recently published a classification of the
solution curves for the Euler–Kirchhoff filament model, see [16] and references therein. It
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Figure 1. Effective potential V (κ) for model I, for different values of µ, κ0 and J :
(a) µ = κ0 = J = 1.0; (b) µ = −1.5, κ0 = 1.0, J = 0 and (c) µ = 1.5, κ0 = 1.5, J = 0.

would be worthwhile to follow this classification frame to undertake the same classification
of the solution curves for the purely quadratic curvature model.

Following [1], the solution configurations for

f (κ) = (κ − κ0)
2 + µ (2.1)

are determined by the differential equation:

2κ ′′ + κ3 − µκ − κκ2
0 − 2J 2

(κ − κ0)3
= 0, (2.2)

where J is an integration constant that relates curvature and torsion:

τ(κ) = J

(κ − κ0)2
. (2.3)

Equation (2.2) can be integrated by a quadrature as follows:
1
2κ ′2 + V (κ) = E, (2.4)

where E is a second integration constant and the effective potential V is given by:

V (κ) = 1

8

(
κ2 − κ2

0 − µ
)2

+
J 2

2(κ − κ0)2
. (2.5)

The structure of V (κ) obviously depends on the value of the parameters µ, κ0 and J . Figure 1
shows the three kinds of configurations that can be obtained for V (κ). It turns out that only the
first case gives rise to curves in three dimensions, while the other two, having J = 0, produce
curves contained on a plane. Horizontal lines with different values of E allow to label each
solution curve of the family.

Let us first consider solutions for graph (a), figure 1. The potential has two branches,
each with a minimum, V = Vmin. Let us consider that E = Vmin on either branch, then κ and
τ are constant and nonzero, let us say κ = κmin and τ = τmin; and the solution curve is a helix
with constants a and b as depending on κmin and τmin as given in the appendix. These values
of κmin are obtained as roots of a six order polynomial in κ whose solutions depend also on
the values of (µ, κ0, J ).

For every value of µ, whether positive or negative, as large as desired, there always are
two real solutions for the six order polynomial and the behaviour of the critical curvature κmin

with µ is almost the same, irrespective of whether the value of κ0 is zero or not. As µ takes
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(a) (b )

(c) (d )

Figure 2. Solution curves for model I with µ = κ0 = J = 1.0, for different values of E:
(a) E = 0.0846 (E = 0.9399), (b) E = 0.431 29 (E = 1.0981), (c) E = 0.7780 (E = 1.2562),
(d) E = 1.1247(E = 1.4144), where the first (second) value corresponds to the left (right) branch
of potential of figure 5 and to the bold (light) line, respectively.

the values of, for instance the interval (−10, 10), starting from the negatives ones, the two
branches are moving downward in the plane V versus κ from V ≈ (κ2 − |µ|)2 with κmin

almost constant κmin ≈ (
2J
µ

) 1
4 . When µ reaches the value µp ≈ −κ0, both branches start

moving away from the asymptotically vertical line at κ = κ0 and in such a case the value
κmin ≈ ±√

µ moves to the left (for left branch) and to the right (for right branch) in the plane
V versus κ .

Because the helix is the most prominent solution of this kind of energy functionals, it is
worth following the geometric change of the helix as depending on the value of the parameter
µ for model I. In fact, in figure 11 we show the behaviour of the ratio of the curvatures α = κ

τ

for the helix for each branch of the effective potential V (κ) against µ for different models.
What these curves indicate (see appendix) for model I is that the helices for each branch keep
their diameter almost constant for µ � −κ2

0 ; when µ � −κ2
0 , then the diameter (of the

helices) starts increasing as µ increases. The difference between the helices for left and right
branches found in model I is only the starting point of progress of the helix as long as they
are both counterclockwise curves. We note also that the behaviour of the curves of figure 11
is qualitatively the same irrespective of the value of κ0 for model I.

Now we try to describe the appearance sequence of the solution curves for model I as we
inspect the values of the parameter E in the potential well. For both branches of the potential,
the initial cylindrical helix is notably geometrically distorted for values of E very close to the
minimum value. There appear loops, and the curve gets wounded in space. However, for
large values of E � Emin, symmetry of the curves is restored, but in this time, the curve forms
an eight: simply in going to and getting back from its extreme points. The detailed way in
which curves undergo this process is quite different for each branch of the potential. Such
differences can be appreciated in figure 2 where we show three-dimensional solution curves
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Figure 3. Solutions for case (c) of figure 1, model I. We show solutions with (a) E = 0.5000,
(b) E = 1.7577 and (c) E = 3.5000, for both the left (solid line) and right (dotted line) branch
of V .

to the Frenet–Serret equations (1.2) for this model. It is worth mentioning that curves here
found for the left branch are reminiscent of the curves shown in figure 2 of [5].

Consider now solutions for panels (b) and (c) of figure 1, for which J = 0. In both
cases, V is symmetric under a reflection κ → −κ , so that when µ + κ2

0 � 0, there is only one
minimum, while for µ + κ2

0 > 0, V has a maximum between the minima. The curves found
for case (b) are uninteresting, as they only oscillate between their extrema. For case (c) there
are two different types of curves, depending on whether Vmin < E < Vmax, or E � Vmax,
see figure 3. In figure 3 we note that curves (a) and (b) belong to the same type, but whereas
curve (a) is obtained for E near Vmin, curve (b) corresponds to a value of E near Vmax. Varying
E within the interval Vmin < E < Vmax, we can observe the circle generated for E = Vmin,
turning into a series of elliptical loops winding around a bigger circle. As E grows, the initial
curvature tends to 0, so that the loop tends to consist of less curved segments, as can be seen in
graph (a) of the same figure 3. Note also that the curves for both branches are essentially the
same. In this case, the only closed curves are the circle and the figure eight, as was anticipated
in [1]. Solutions like those shown in panel (b) of figure 3 are obviously more difficult to
predict only on analytical grounds. One can take advantage of the fact that the value for E
for this solution is close to Vmax, in order to consider a perturbation analysis, and after that an
analysis of stability for these kind of solutions would also be interesting.

Here κ0 represents the tendency of the curve to be naturally not straight, that is, the lowest
energy configuration is not a straight line. In our case, however, we do not find an important
effect of κ0 on the form of V . In particular, setting κ0 = 0 only causes the graph (a) of
figure 1 to become symmetric under the reflection κ → −κ , while graphs (b) and (c) remain
essentially the same, with µ determining entirely the form of V : V has only one critical point
for µ > 0, but it has three critical points for µ < 0. Figure 4 shows solutions for κ0 = 0,
with the same values of E used to generate the curves in figure 2 in order to compare between
them. It can be seen that they look less wound than is the case with κ0 �= 0.

To end this section, we plot in figure 5, the energy H against E for each curve with the
parameters µ,J and κ0 fixed to the values given in figure 1 for V (κ). We note first that E has
no known physical meaning; it is just a label for the curves of the family and therefore, the
plot is only meant to suggest a comparison between the different geometric structures of the
curves in the family. Besides, according to equation (1.3), the value of H depends on the total
length of the curve, and in order to account only for geometric differences between the curves,
we have then fixed the length of each curve to the same (arbitrary) value, say L0. Additionally,
we have integrated out the µ term in the calculation of H, since µ is introduced as a Lagrange
multiplier for the constraint imposed on the total length of the curve, and not as a part of the
energy itself.
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Figure 4. Solutions for model I with µ = J = 1.0, κ0 = 0 and values of E given by: (a) E = 0.35,
(b) E = 0.40, (c) E = 0.65 and (d ) E = 1.41.

3. Model Ia: f (k, τ ) = 1
2κ2 + ατ + µ

Let us add a linear term on torsion to equation (2.1). This term can be considered as another
constraint on the energy functional given by equation (2.1) for the special case κ0 = 0, that is

f (k, τ ) = 1
2κ2 + ατ + µ. (3.1)

It turns out that this model is also integrable by means of a quadrature, with the effective
potential depending again only on the curvature:

1
2κ ′2 + V (κ) = E, (3.2)

where

V (κ) = 1

8
(κ2 − 2µ)2 +

1

8κ2

(
αµ − J +

1

2
κ2

)2

. (3.3)

Before continuing with the analysis of the effective potential, we must mention that this
energy minimization problem was already considered by Langer and Singer in [17] and by
Ivey and Singer in [18]. In the former, the authors found the solution for both the curvature
and torsion in terms of elliptic integrals. In [18] a complete description of the space of closed
and quasiperiodic solution curves for this model is given. There remains therefore almost
nothing to be said that is not already discussed in these works. Despite this, for the sake of
completeness of our work and for visualization purposes, we include this energy functional
and we will show some of the solution curves that these authors have not shown explicitly.
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(c) (d )

Figure 5. Energy H against E for the family of solution curves for the model (2.1) without µ. The
values of the remaining parameters for curves in graphs (a), (b) and (c), were given to the same as
those used in the effective potential of figure 1 for graphs (a), (b) and (c) respectively. For graph
(d) we have used the family of curves found for the case κ0 = 0 illustrated in figure 4. Bold lines
in this plot correspond to H for the solution curves found for the left branch of V (κ) whereas the
light lines correspond to H for the solution curves of the right branch of V (κ).
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Figure 6. Effective potential V for model Ia using the values (a) µ = 1 α = 1 J = −1;
(b) µ = −1 α = 1 J = −1 and (c) µ = 1 α = 1 J = 1.

The solutions will now be determined by the set of four parameters (µ, α, J,E). As in
the previous case, E and J are integration constants resulting from the invariance of H under
translations and rotations, respectively. As in model I, we can write τ as a function of κ alone:

τ(κ) = αµ − J

κ2
+

α

2
. (3.4)

For a combination of parameters such that αµ − J �= 0 we observe that V has two
symmetric branches that extend asymptotically to ∞ at κ = 0, see panel (a) of figure 6 while
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(a) (b)

(c) (d )

Figure 7. Curves from model Ia for µ = 1 α = 1 J = −1, with values of E given by:
(a) E = 0.5503, (b) E = 1.0736, (c) E = 1.5969 and ( d ) E = 2.1203.

for other values of the parameters, V could have one or three critical points, without any
asymptotic line. Indeed, the singularity of V at κ = 0 can be removed if αµ − J = 0.

Consider first the case with µ ≡ J
α

� 1
16 . Here, V has only one minimum, as shown in

panel (b) of figure 6. On the other hand, for µ = J
α

> 1
16 there is a maximum between two

minima, panel (c) of figure 6. In both cases, V is symmetric under a reflection, κ → −κ .
In spite of the similarities between the effective potential of models I and Ia, the resulting

curves are quite different, and we show in figure 7 solutions for the potential in figure 6(a);
graph (a) shows the helices obtained with E = Vmin, the minimum of V on both branches.
As E grows, the helices turn into more elaborate curves with several loops winding after each
other around a circle. We note that these curves resemble the loops obtained in [11], where
the functional given in equation (1.5) with area and length constraints was studied. One can
say that solution curves found for model Ia are the open partners of those closed curves found
in [11]. Likewise, curves obtained from the potential in figures 6(b) and 7(c) are shown in
figures 8 and 9, respectively. In the latter case, the configurations from the left and right
branches are identical due to the symmetry of the equations under a reflection κ → −κ . Thus
it is interesting to note that for the last combination of parameters the solution curves have a
constant torsion τ = α

2 .
As in the previous section, figure 10 shows a plot of the energy H against E for the solution

curves obtained. Here as well, curve length was fixed to L0 employed for model I, and none
of the curves considered were contained on a plane. We have also integrated out µ when
calculating H. Finally, we offer in figure 11 the changes in the geometry of the helix solution
for this model when µ takes values in the interval (−10, 10). We observe that the diameter of
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(a) (b) (c)

Figure 8. Solutions for model Ia with µ = −1 α = 1 J = −1, using: (a) E = 1.2037,
(b) E = 3.3148 and (c) E = 6.8333.

(a) (b)

(c) (d )

Figure 9. Curves for model Ia for µ = 1 α = 1 J = 1, with: (a) E = 0.0605, (b) E = 0.2633,
(c) E = 0.4661 and ( d ) E = 0.8041.

the helix keeps almost constant for large negative values of µ as was the case found for model I;
however, the diameter does not increase as fast as was the case in model I for large positive
values of µ.
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Figure 10. Energy H without µ (see the text for explication) for space curve solutions for the
functional (3.1) illustrated in graphs (a), (b) and (c) of figure 6, respectively.
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τ

for helices found at the minimum of either branch (left or right) of the
effective potential in model I against µ. The remaining parameters for each model are kept fixed
as indicated in the text.

4. Model II: f (τ ) = 1
2 (τ − τ0)2 + µ

We turn now to a model depending quadratically on torsion alone. This model is more
complicated than all the preceding cases considered so far because third order derivatives of X
are involved and the resulting equations are of sixth order. Surprisingly, however, this model
can also be integrated by a quadrature as was demonstrated in [1]. We consider that models II
and IIa (to be treated in the next section) are the novel contribution of this work since the
analysis of the effective potential has not been reported anywhere as far as we know.

Following again the method developed in [1], it can be shown that, starting with the
functional

f (τ) = 1
2 (τ − τ0)

2 + µ, (4.1)
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Figure 12. The bold (light) lines represent curves for V (τ) for model II with τ0 = 0 (τ0 = 1.0) for
fixed parameters J = 1.0 and E = 2 and with values (a) µ = −2.0, (b) µ = 2.0 and (c) µ = 4.0.

two integration constants J and E can be constructed as follows:

J = 1

2
(τ − τ0)

(
τ 2

0 − τ 2 + 2µ
) − τ

(
τ ′

κ

)2

, (4.2)

and

E = κ2

4τ 2

[(
τ ′

κ

)2

− f (τ)

]2

+ τ 2

(
τ ′

κ

)2

+
1

4

(
τ 2

0 − τ 2 + 2µ
)2

. (4.3)

We will show now that combining the equations above, κ can be expressed solely in terms of
τ , which is noteworthy in itself since the torsion then determines the curvature at each point.

Let us start with the special case τ0 = 0. Solving equation (4.2) for τ ′
κ

and substituting it
in equation (4.3), we obtain

κ2(τ ) = 4τ 4

[
E + Jτ + 1

4τ 4 − µ2

(J + τ 3)2

]
(4.4)

and using equation (4.4) again in equation (4.3), we identify the effective potential V (τ)

V (τ) = τ 3

4

[
(4E − 4Jτ + τ 4 − 4µ2)(τ 3 − 2µτ + 2J )

(J + τ 3)2

]
, (4.5)

where we have considered that in this case the quadrature is now written as
1
2 (τ ′)2 + V (τ) = 0. (4.6)

It is important to note that the right-hand side of this quadrature is identically zero, so we need
to find the roots of the function V (τ) in order to determine the boundary conditions or the
turning points, (τini, τfin) in order to solve the quadrature for the arc length of the curve.

As long as the expression involved in finding the critical points of V , that is V ′(τ ) = 0,
is a ten order polynomial in τ , making it very difficult to follow analytically the properties
of V when µ changes, we will just mention some of the qualitative features of V (τ) and
we will show representative plots generated for different values of µ while keeping fixed the
remaining free parameters of the model.

We note that for all values of the parameters there are always two branches of the effective
potential separated by an asymptotic vertical line at τa = −(J )

1
3 . For τ ≈ τa we have that the

two branches of V (τ) go to −∞; while for τ � |τa| (far from the asymptotic line) the two
branches of V go to ∞ , see bold lines of figure 12. Near the asymptotic line, we emphasize
that V changes appreciably for small changes of µ, above all in the interval −2 < µ < 2
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Figure 13. Plot of α ≡ κ
τ

for helices found at the minimum of either branch (left or right) of the
effective potential in model II against µ. The remaining parameters for each model are kept fixed
as indicated in the text.

(having fixed E = 2 and J = 1), as long as the sign of the branches of V are determined
by the polynomial � = 2µ3 + µ2 − 5

2µ − 5
4 in the limit τ− > τa . � shows up a small

maximum followed by a minimum in that interval; out of this interval, for instance for τ � 2
then �− > ∞ and for τ � −2 then �− > −∞.

We have at least two real roots of V apart from the trivial one τ = 0, which does not
lead to any interesting solution curve as long as the corresponding curvature is κ = 0. In
that case, every branch is cutting the line V = 0 at τ �= 0 at least one time for all values of
the parameters. For positive values of µ, the right branch of the effective potential develops
several critical points τcrit such that V ′(τcrit) = 0. A typical graph is shown in panel (c) and
(b) of figure 12, where a maximum between two minima can be seen.

It is interesting to note that the wells developed in the two branches of the potential will
lead to a cylindrical helix solution when the minimum of the branches touches the horizontal
axis V = 0 on only one point, see panel (c) of figure 12. Of course the value of τcrit when this
happens depends on µ.

As was done for the helices solutions found in model I, we have followed the form of
these helices solutions for model II, both for τ0 = 0 and τ0 = 1.0. In figure 13 we have shown
the values of µ for which this event occurs and therefore a helix of a given α = κ

τ
can be

identified. It should be noted that for model II a large change in µ implies only a very small
change in the geometry of the resulting helices. We observe here the opposite behaviour that
was seen to occur for model I, that is, for increasing values of µ the diameter of the helices
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Figure 14. (a) Curves for model II corresponding to V shown in figure 12(b) and with µ = 2 τ0 =
0.0 J = 1.0 E = 2.0. and (b) Curves for model II with µ = 3 τ0 = 1.0 J = 1.0 E = 2.0. In both
cases, bold(light) line corresponds to the left(right) well of the effective potential.

are actually decreasing, although this change is at a very small rate. We do not observe any
qualitative difference in the behaviour of these α curves against µ whether τ0 is zero or not.

In panel (a) of figure 14 we show some solution curves for this model.
Let us consider now the case when τ0 �= 0. The equations involved for this case are

obviously more cumbersome than in the previous case. Fortunately, most of the qualitative
features discussed above for the effective potential apply almost without change for the present
case irrespective of the value of τ0. Again, we know that the curvature is determined at each
point by the torsion

κ2(τ ) = 4τ 4

(
E + Jτ − 1

2τ(τ − τ0)
(
τ 2

0 − τ 2 + 2µ
) − 1

4

(
τ 2

0 − τ 2 + 2µ
)2

[
1
2 (τ − τ0)

(
τ 2

0 − τ 2 + 2µ
) − J − τf (τ)

]2

)
. (4.7)

where f (τ) is given by equation (4.1). Following the convention for the quadrature given in
equation (4.6), we find that the effective potential depends again only on τ , although for this
case by means of a rather involved relationship:

V (τ) = −κ2(τ )

2τ

[
1

2
(τ − τ0)

(
τ 2

0 − τ 2 + 2µ
) − J

]
. (4.8)

There are again four parameters to deal with, (J,E,µ, τ0). However, if we fix τ0 = 1
then we will find almost the same qualitative behaviour for V (τ) that was found for the case
τ0 = 0 discussed above. For instance, in figure 12 with light line we show V (τ) for three
increasing values of µ with τ0, J and E fixed. In all cases, V has two branches. Let us start
with graph (a): both branches tend asymptotically to −∞ near the asymptotic line at τ ≈ 1
and therefore each branch has only one intersection with the axis V = 0, so the solution curves
will be helices with constant κ and τ . In graphs (b) both branches tend to +∞ at the new
asymptotic line at τ ≈ −1 but each of the branches develops its own wells either and they
cut the axis V = 0 at two points at least, giving place to a solution curve which will be more
complex. In panel (c) V has three wells; although they look similar to the wells developed by
V in the case τ = 0, the curves obtained for each region are very different from each other.
Two such curves are shown in panel (b) of figure 14 with the bold (light) line corresponding
to the left (right) branch of V , respectively. Two deformed helices can be recognized, but the
deformation is different in each case: for the right well, the circular loops of the original helix
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turn into elliptical loops, while for the left well loops of different radii evenly spaced along
the helix axis are obtained.

It turns out that the central well of panel (c) in figure 12 does not generate any curve at
all, because the curvature, equation (4.7), is not real for τ within this region. This is another
rather surprising result, but so far we have not been able to find a fundamental, geometrical
reason for such behaviour. The curves obtained for V shown in figure 12(b) have essentially
the same qualitative properties as before, namely, a deformed elliptical helix corresponds to
the left well, and the curvature is not real for the right well.

In figure 13 we offer again the curves for the ratio α = κ
τ

against µ for cylindrical helix
solutions. These helices have been formed when both wells of the potential V (τ) touch the
axis V = 0 in only one point (within an error of 1.0e–3).

5. Model IIa: f (κ, τ ) = 1
2τ 2 + ακ + µ

Although this model is mathematically more complicated than all the models considered so far,
it also admits the two basic conserved quantities associated with invariance under translations
and rotations. Following, as before [1], one starts with the functional

f (κ, τ ) = 1
2τ 2 + ακ + µ (5.1)

and arrives at an expression for constant E:

E = κ2

4τ 2

[(
τ ′

κ

)2

− τ 2

2
− µ +

ατ 2

κ

]2

+
(τ 2 − 2µ)2

4
+ τ 2

(
τ ′

κ

)2

, (5.2)

and another for constant J :

J = τ

2
(2µ − τ 2) −

(
τ +

ακ

2τ

) (
τ ′

κ

)2

+
ακ

2τ

(
µ +

τ 2

2
− ατ 2

κ

)
. (5.3)

The fact that the term τ ′
κ

appears squared in both expressions allows us to construct a
quadrature, similar to the previous case:

1
2 (τ ′)2 + V (τ, κ) = 0. (5.4)

Although V depends now on both τ and κ , κ can be written in terms of τ , κ = κ(τ), and the
quadrature can thus be considered as a function of τ alone, as we will now show.

Eliminating the term τ ′
κ

in equations (5.3) and (5.2), and after some simplifications, the
following polynomial in τ

κ
can be written:

(−4Jτ 3 − τ 4α2 − 4Eτ 2 − τ 6 + 4µ2τ 2)
(τ

κ

)2

+ (−4Eατ − τ 3α3 − 4Jατ 2 + 4µ2ατ − τ 5α)
( τ

κ

)
+

(
J 2 + 2Jτ 3 − Eα2 + τ 6 + µ2α2 +

3

4
τ 4α2

)
= 0. (5.5)

In this way, given a set of values for parameters (µ, α, J,E), and for a given value of τ ,
equation (5.5) can be solved for the ratio τ

κ
and from here the corresponding value of κ can be

obtained for the proposed τ .
On the other hand, from equation (5.4) we can identify the corresponding effective

potential according to equation (5.4) provided that we translate all other terms to the left side
except the one that contains τ ′; in doing so we have

V (τ) = −1

2

(
τ ′

κ

)2

κ2 (5.6)
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Figure 15. Representative graphs of V for model IIa with (µ, α, J, E) given by: (a) (2.0,1.5,
1.0,2.0) and (b) (20.0,1.5,1.0,2.0). For panel (b) we show only the well of the right branch of the
effective potential but it must be emphasized that the global behaviour of the curve is the same as
that in panel (a).
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Figure 16. Solution curves for model IIa, corresponding to the values of panel (a) in figure 15.
Bold(light) line corresponds to the left(right) well of the effective potential.

which can be written by using equation (5.3) again in the form

V (τ) = 1

4

[
4J

(
τ
κ

) − 4τ
(

τ
κ

)
µ + 2τ 3

(
τ
κ

) − 2αµ − ατ 2 + 2α2τ
(

τ
κ

)
(
2τ

(
τ
κ

)
+ α

)
]

. (5.7)

Moreover, through the implicit function κ(τ), we can consider that a quadrature in terms of
τ has been obtained: once a pair of values (τ, κ) has been determined, the right-hand side of
equation (5.7) gives V implicitly. We have generated a pair of graphs for V in this way; they
are shown in figure 15.

It must be emphasized that for most of the parameter space of this model, there are always
two real roots for the second order polynomial in τ

κ
in equation (5.5), as long as τ is away

from the central region around τ = 0 where no real roots are found. This is why the curve
shown in panel (a) of figure 15 appears flat in the central region. We should also mention that
each real root of the polynomial gives rise to a curve and to the well that forms each of the
two branches of the effective potential.

As was the case when we studied model II, for this model the corresponding solution
curves are associated only with the left and right wells, which persist even for large values
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of µ as is shown in panel (b) of figure 15. This persistence of the wells prevents us from
identifying helices because the wells never rise enough in the plane to touch the axis V = 0
in only one point, as was the case in a previous section (at least within an small error around
1.0e–3). We have shown such solution curves in figure 16.

6. Conclusions

In this paper we have shown plots of effective potentials and their associated numerical
solution curves for a wide class of energy functionals involving both quadratic and linear
terms of the curvature and torsion of the curve. Because of the complicated nature of the
equations involved for models other than the quadratic-curvature model, for which there is an
exact solution known by means of elliptic integrals, in general we have to revert to an analytical
treatment especially in the case of quadratic torsion depending functionals. For these cases,
we have to content ourselves with a numerical analysis and with a qualitative description of
solutions curves as we have done here; and as far as we know, this study is the first of its kind.

It is important to emphasize that the Fortran 77 codes are the main scientific outcome of
this work. These codes enable us to get more specific information about the properties of the
effective potential and its associated solution curves, allowing us to assemble a showcase of
numerical curves as complete as we wish. The authors offer this computational tool (upon
request to the authors) for everyone who might be interested in generating an animation of the
solutions for his own set of parameters. The full benefits of this computational tool can only
be appreciated with the use of an interactive graphic computer.

It could be interesting to consider what the curves would become when we change
parameters other than µ. We have not considered all possible cases in the interest of keeping
the number of plots of this paper manageable. In a forthcoming paper we will consider the
problem of making a classification of solution curves from a geometric point of view. We
hope that the view of these new curves and properties may suggest the possibility of taking
on use of these energy functionals as approximate models to describe equilibrium states and
some mechanical properties of polymer chains [24], as well as the occurrence of supercoiling
in the DNA double chain, see [25].

Although it is our opinion that such models can lead to very fruitful results when used as
mechanical models, we have not attempted here to describe any particular physical system,
nor to study actual properties of complex duplex of supercoiled DNA (see review written
by Tamar [26] and references therein). Our main objective has been simply to show more
solutions than were previously known. Although we have shown only a very few of them, we
have been able to uncover such a huge variety of solutions because of the great advantage that
the method of quadratures has compared with other methods.

In fact, the aforementioned applications for the study of polymer chains and DNA, and in
particular, their response to shear flow, will be left for a future work. Similarly, a comprehensive
investigation of the model quadratic on both the torsion and curvature, equation (1.4), will be
presented elsewhere, as the resulting equations cannot be solved by quadratures any longer,
and therefore different methods are needed.

We note here that some relevant work may still be done in this field. For example,
constructing the Frenet–Serret basis to the case of curves in N dimensions; then will be
N − 1 scalar curvatures: κ1 representing the curvature, κ2 the torsion, and so on for κN−1.
This suggests the possibility to extend the present work to the more general case of energy
functionals with quadratic terms of higher curvatures, κ2

n . Such cases will be mathematically
more complex, but we think that the solution curves could possess confining properties of
interest in other dynamical contexts, see e.g. [19].
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Appendix. Numerical implementation

In order to integrate the Frenet–Serret equations (1.2), we need first to solve the quadrature
for the model of interest, equations (2.4), (3.2), (4.6) or (5.4), to find κ and τ as functions of
l. In turn, this implies finding first l from one of these equations, and setting the integration
interval for the quadrature. To illustrate the procedure let us take the first case, equation (2.4).
Inverting for l we have:

l − l0 =
∫ κf

κi

dκ√
2(E − V (κ))

. (A.1)

We can fix l0 = 0. The initial and final values of κ , κi and κf , correspond to the roots of
V (κ) = E, that is, the values of κ for which κ ′ = 0 (the ‘turning points’, if we use the
analogy with the particle in a central potential problem). These roots can be computed to
a very high accuracy employing Newton’s method (see, for instance, [27, 28] for this and
the rest of the numerical methods mentioned in this appendix). Once κi and κf are known,
l can be calculated, but some care is needed to integrate equation (A.1) since the integrand
is singular at these points. We have implemented an open Romberg integration imposing an
overall accuracy of ε = 10−7. This value of l is used as the interval to integrate the quadrature,
equation (2.4), by means of a fourth-order Runge–Kutta scheme, and consistency is ensured
by checking that the value of κ at the end of the integration is equal to κf to the same accuracy
ε. Equation (2.3) (or the corresponding relation for the studied model) gives the corresponding
τ . Finally, these values are used to integrate the Frenet–Serret equations, employing also a
fourth order Runge–Kutta integrator.

A word on the initial conditions used to integrate the Frenet–Serret equations is in order.
The freedom given to us due to the fact that curvature and torsion determine entirely a curve
up to rigid motions can allow us to confine our attention to a helix with symmetry axis parallel
to the z-axis. Such a curve can be parametrized as:

x(l) = a cos

(
l√

a2 + b2

)

y(l) = a sin

(
l√

a2 + b2

)
(A.2)

z(l) = b

(
l√

a2 + b2

)
.

The (constant) Frenet–Serret curvatures are:

κ = a

a2 + b2
(A.3)

τ = b

a2 + b2
,

which can be inverted to express the helix constants in terms of κ and τ :

a = κ

κ2 + τ 2
(A.4)

b = τ

κ2 + τ 2
.
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We have used these expressions as initial conditions to integrate the Frenet–Serret equations,
since in all models, a solution of the cylindrical helix kind appears. For the purpose of
characterizing the geometrical behaviour of the helix when the parameters of the model
change, we have also introduced the ratio α = κ

τ
, which is constant for the cylindrical helix, in

fact, α = − a
b
. Then, we can consider a one-parametric helix in the sense that a = −α ∗b, and

therefore that the coefficients appearing in equation (A.2), (a, a, b) transform to (α, α, 1) ∗ b;
therefore α here describes the radius of the helix and b is merely a scale factor, see figures 11
and 13.
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